TRIM3 Random Numbers
TRIM3 simulations may generate random numbers, which are dependent on:

Name of the random number variable

HouseholdID

PersonID

Month (if the random number is monthly)
TRIM simulations may also use random numbers that have been generated by conversion or by baseline simulations. In order to use a random number from a baseline simulation, the baseline simulation must first save the random number as a microdata results variable. The random number results variable may then be specified in a variable list program rule for use by another simulation.

Random numbers generated by conversion are stored in an input schema’s input tables and are available via a direct code reference that does not require the use of a variable list program rule. The random numbers are typically generated for a specific use that is suggested by the random number variable name. Using such a random number for a purpose other than the one for which it was generated could have an unintended impact if two programs using the same random number are run simultaneously in the same run setup. Therefore, when a new random number is needed, it is preferrable that it be generated internally by the simulation that needs it.
There are two kinds of random numbers generated by TRIM: uniformly distributed random numbers, and normally distributed random numbers. This document provides some information about how each of type of random number is generated and how to implement them within TRIM simulation code.

Types of Random Numbers Used Within TRIM

The uniform random number function, GetRandom(), accepts up to three parameters as input and returns a uniformly distributed random number between 0 and 1 (i.e. all values between 0 and 1 have an equal probability of occuring). This number is either a newly generated random number based on the input parameters, or an existing random number from the input or results variables.

The normal random number function, GetRandomNormal(), accepts up to three parameters as input and returns a normally distributed random number with a mean of 0 and a standard deviation of 1 (i.e. the distribution of random numbers is shaped like a bell curve, and positive or negative numbers close to 0 have the highest probability of occuring). This number is either a newly generated random number based on the input parameters, or an existing random number from the input or results variables.

In addition, the TANF module uses the probnorm() function, which takes a real number as input and returns a corresponding value within the cumulative normal distribution.

The Random Seed Table

All random numbers are generated from random seeds, which are very long integers. In order for the random numbers to be different, the random seeds must be different. If the random seeds are the same, the random numbers will also be the same.

For any given simulation, all the random numbers with different names are given separate entries in an internal random seed table. For example, if there are three different random numbers generated by the simulation (e.g. RandomNumTimeLimit, RandomNumMedicalExpenses, and RandomNumPrevParticipant), the random seed table will contain three entries of very long integers.

As the frame loops through the households, it increments the value of each of these integers by the arbitrary number 30 for each household. This guarantees that the random seeds will always be different from household to household. The starting seed of a random number is always the same for a given input year. This ensures that a given household or person will be assigned the same random number in every simulation ID run for that year. Note different versions of the same input year (e.q. Alien and non-Alien) will start with the same seed.

In addition, when the random number functions GetRandom() and GetRandomNormal() are called with various parameters, the random seed gets incremented by a set amount depending on the parameter values. Therefore, two random number function calls with the same parameter values will increment the random seed by the same amount and return the same random number, whereas two random number function calls with different parameter values will increment the random seed by different amounts and return different random numbers.

Existing Random Numbers

Before a new random number is generated based on the random seed, the random number functions GetRandom() and GetRandomNormal() first check to see whether there is an existing registered variable with the same name as the random number.

There are two types of registered variables: input variables and results variables. All input variables are registered. Results variables are registered if the current run setup has a variable list rule containing that variable.

If there is an existing registered variable with the same name as the random number, GetRandom() and GetRandomNormal() return the value of that variable for the current person in the current household, ignoring any parameters passed to them.

Newly Generated Random Numbers

If there is no registered variable with the same name as the random number, the functions GetRandom() and GetRandomNormal() return newly generated random numbers based on their input parameters.

Both functions take three parameters: an index to the internal random seed table, a personid, and a month.

If there is no second or third parameter specified, the personid defaults to the current person’s personid and the month defaults to month 0. (Note that this is slightly confusing, as the month is the second parameter when there are two parameters and the third parameter when there are three parameters.)

In the C++ code, the functions are actually implemented as three separate functions of the same name, each taking a different number of parameters, for a total of six functions, three for GetRandom() and three for GetRandomNormal().

INTENDED USAGE:

We can generate a household-level random number (one that will be the same for all members of the same household) by calling GetRandom(Index, 0, 0) for each person in the household (the second and third parameters never change).

We can generate a unit-level random number (one that will be the same for all members of the same unit) by calling GetRandom(Index, UnitHead, 0) for each person in the household (the second parameter is constant within the same unit and the third parameter never changes).

We can generate a person-level random number (one that will vary from person to person) by calling GetRandom(Index, PersonID, 0) for each person in the household (the second parameter changes from person to person, but the third parameter never changes). This is the same as the default behavior of calling GetRandom(Index), with only one parameter.

We can generate a person-level monthly random number by calling GetRandom(Index, PersonID, month) for each person in the household.

ACTUAL USAGE:

In actual practice, we usually create household-level and unit-level random numbers as follows:

Annual household-level random numbers: Call GetRandom(Index) only once, without second or third parameters, for the household head. Save that value to all other household members for all months.

Annual unit-level random numbers: Call GetRandom(Index) only once, without second or third parameters, for the unit head. Save that value to all other unit members for all months.

The same process could be repeated for monthly random numbers, calling GetRandom(Index) for the head only, for every month, and then saving those values to everyone else, but there doesn’t seem to be a standard TRIM convention one way or the other.

IMPLEMENTATION NOTES:

1) GetRandom() and GetRandomNormal() use the second and third parameters as follows: Take the random seed, add the personid (second parameter) to it, multiply the sum by 12, and add it to the month (third parameter). The purpose of multiplying by 12 is simply to ensure that a different increment is generated for each personid/month combination. For example, if we didn’t multiply by 12, then a personid value of 1 added to a month value of 2 would generate the same increment of 3 as a personid value of 2 added to a month value of 1. This same increment would be added to the random seed, which would then generate the same random number.

In the simulation code, it is possible to pass misnamed arguments as parameters and still get reasonable results. The code doesn’t actually care whether the personids and months are actually personids followed by months, or months followed by personids, or bluefish followed by whales, as long as they are integers that specify which random numbers should be unique and which should be the same.

The exception, of course, is when the value of the third parameter exceeds 12. Then, there is no guarantee that 12 times the second parameter plus the third parameter will generate a unique increment to the random seed.

2) GetRandomNormal() uses the following approximation for a normally distributed random number:

a) Get 12 different uniform random numbers ranging from 0 to 1, based on the random seed.

b) Sum them up.

c) Subtract 6 (which is half of 12).

d) Multiply that by the intended standard deviation (1) and add the intended mean (0).

This was carried over from TRIM2.

3) The function for generating uniformly-distributed, seed-based random numbers from 0 to 1 can be found on page 280 of a book called Numerical Recipes, according to the comments in the code.

4) If you use a random number stored on an annual input table, note that it will return the same number for all months.

5) The value of the random number stream is sensitive to both the name of the random number and the name of the simulation. For example, changing the name of the random number passed to the “CreateRandomSequence” function from “RandomNumAfdcUpEligibility” to “RandomNumTANFUpEligibility” changes the value of the stream. Likewise, if the AFDC simulation uses a random number called “X” and the TANF module also uses a random number called “X”, they will generate different streams.

Step-by-Step Instructions for Creating and Using Random Numbers

STEP 1: CREATE AN INDEX VARIABLE:

Create a variable of type int in the CInstSet-derived class. This variable will hold an index to the the random seed table. (Note: In the actual simulation code, the index variable is usually of type RandomSequence, but type RandomSequence is really just a poorly named, completely useless typedef for int.)

class CFStampIncome : CIncome {

...

int RandomNumIdx;

...

}
STEP 2: ADD YOUR RANDOM NUMBER TO THE RANDOM SEED TABLE, AND OBTAIN THE INDEX TO THAT TABLE ENTRY:

In the overridden Initialize() function of the CInstSet-derived class, call CreateRandomSequence() with the name of the random number as a string parameter. Set your index variable to be equal to its return value.

void CIncome::Initialize() {

...

RandomNumIdx =

pHousehold->CreateRandomSequence("RandomNumName");

...

}
CreateRandomSequence() adds an entry for the new random number to the random seed table, and returns an index to that entry. Because we only want this to happen once in the lifetime of the class, CreateRandomSequence() must be called in the Initialize() function of the class and not anywhere else.

STEP 3: CREATE A RANDOM NUMBER:

Call GetRandom() or GetRandomNormal() with the index to the random seed table as the first parameter, and personid and month as optional second and third parameters.

float myRandomNum = pHousehold->GetRandom(RandomNumIdx, 0, 0);

If the name of the random number, specified in the parameter string in the earlier call to CreateRandomSequence(), is the same as an existing registered variable (i.e., all input variables and all results variables specified in variable list program rules for the current run setup), GetRandom() and GetRandomNormal() will return the value of that variable.

Otherwise, GetRandom() and GetRandomNormal() will return newly generated random numbers based on the parameter values.

Cumulative Normally Distributed Random Numbers
There exists a probnorm() function which takes as its one parameter any real number x, and returns its y-value for a cumulative normal distribution function where the mean of the normal distribution is 0 and the standard deviation is 1.

The range of return values for probnorm() is from 0 to 1. The domain is negative infinity to infinity.

We use probnorm() by feeding it adjusted uniformly distributed random numbers. The numbers returned by probnorm() have a cumulative normal distribution rather than a uniform distribution, but they still reflect whatever adjustments were made to the input uniform random numbers.

Additional Notes Provided by Jess
Uniform Random
· Never use the Microsoft rand() and srand() functions. They are very poor implementations that uses a single seed. If you use anything other than 1 for the seed, results are unpredictable. You may or may not get the same numbers after using the same seed.

· TRIM does not use the Microsoft random number functions. A pseudo-random number is calculated for the combination of variable arguments using a pointer arithmetic operation. It is a better pseudo-random number generator than most standard random number functions, but it is not a standard algorithm that has been analyzed mathematically.

· For HIRSM, I use a C++ class with an efficient implementation of the Mersenne Twister algorithm, a relatively new method which many consider the best available. This has worked very well, and we may want to consider it for TRIM.

Normal Random
· The standard TRIM calculation of normal random numbers is basically correct, but crude: ((Sum of 12 random numbers 0-1) - 6) * Standard deviation + Mean.

· The normal and inverse normal functions are approximated by Taylor series in several libraries, notably the IBM scientific library. These approximations are VERY poor outside a small range around the mean.
· For HIRSM, I am using lookup tables based on Microsoft's normal and inverse normal functions, which are very good. I have developed C++ classes for ChildSupport which could be incorparated into the TRIM frame.

· Although Microsoft does not say how they approximated the normal distribution in their functions, it is likely they used a Fourier series.

